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Abstract

In our prior work, we introduced a generalization of
the multiple-instance learning (MIL) model in which a
bag’s label is not based on a single instance’s proximity
to a single target point. Rather, a bag is positive if and
only if it contains acollectionof instances, each near
one of asetof target points. This generalized model is
much more expressive than the conventional multiple-
instance model, and our first algorithm in this model
had significantly lower generalization error on several
applications when compared to algorithms in the con-
ventional MIL model. However, our learning algorithm
for this model required significant time and memory to
run. Here we present and empirically evaluate a new
algorithm, testing it on data from drug discovery and
content-based image retrieval. Our experimental results
show that it has the same generalization ability as our
previous algorithm, but requires much less computation
time and memory.

Introduction
In multiple-instance learning (MIL), each example is a mul-
tiset (called abag) of instances (points) rather than a sin-
gle instance. In the conventional MIL model, each bag’s
(boolean or real) label is entirely determined by a single
point in the bag, e.g. for boolean labels, the bag’s label is
a disjunction of the points’ boolean labels, each of which is
typically determined by the point’s proximity to a single tar-
get point. This is not sufficient for some application areas.
Thus in our prior work (Scott, Zhang, & Brown 2003), we
introduced the generalized MIL (GMIL) model where the
target concept is asetof points and the label for a bag is de-
termined by a more general (non-disjunctive) function over
the attributes. We also gave an algorithm that learns geomet-
ric concepts in the GMIL model and applied it to several ap-
plication areas including content-based image retrieval,drug
discovery, robot vision, and protein sequence analysis, com-
paring our results to those of DD (Maron & Lozano-Pérez
1998) and EMDD (Zhang & Goldman 2001), which are very
successful algorithms in the conventional MIL model. Our
algorithm’s classification error rates were consistently com-
petitive with those of DD and EMDD, and in several cases
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significantly better. This corroborated our belief that the
GMIL model is better suited for some applications than the
conventional MIL model.

However, the basic learning algorithm we gave for the
GMIL model is inherently inefficient, requiring hours of
computation time and hundreds of megabytes of memory
to train. Here we present a much faster and more memory-
efficient algorithm that can handle the requirements of real
pattern recognition systems. Our experimental results show
that it has the same generalization ability as the basic algo-
rithm, but needs much less computation time and memory.

The rest of this paper is organized as follows. In the
following section, we discuss related work in conventional
MIL. Then we describe our GMIL model and our original
algorithm for learning in GMIL. After that, we describe our
new, faster GMIL algorithm. In the experimental section, we
evaluate our algorithm on two application areas (discovery
of antagonist drugs and content-based image retrieval) and
compare it to the old GMIL algorithm. In the last section
we give our conclusions and future work.

The Conventional MIL Model
The multi-instance learning model was introduced by Di-
etterich, Lathrop, & Lozano-Perez (1997). In their model,
each bag is classified as positive if and only if at least one
of its elements is labeled as positive by the target con-
cept. Their work was motivated by the problem of pre-
dicting whether a molecule would bind at a particular site.
They argued empirically that axis-parallel boxes are good
hypotheses for this and other similar learning problems.
This MIL model has been extensively studied (Auer 1997;
Andrews, Tsochantaridis, & Hofmann 2002), along with ex-
tensions for real-valued labels (Doolyet al. 2002; Ray &
Page 2001).

In most MIL work, the label of a bag depends only on
the label of a single point, and the label of each point typi-
cally is assumed to depend on a single target point. Excep-
tions include the algorithms DD (Maron & Lozano-Pérez
1998) and EMDD (Zhang & Goldman 2001) in which a
target concept can be a disjunction over multiple points.
However, such disjunctions have to be severely restricted
for the sake of computational efficiency. In other work,
De Raedt (1998) generalizes MIL in the context of induc-
tive logic programming and defines an interesting frame-
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work connecting many forms of learning, allowing relations
between instances. However, the transformations he gives
between the models have exponential time and space com-
plexity. Also, such generalizations must be explicitly tuned.

Our Generalized MIL model
In the GMIL model, the target concept is a set of pointsC =
{c1, . . . , ck}, and the label for a bagB = {p1, . . . , pn} is
positive if and only if there is a subset ofr target points
C′ = {ci1 , . . . , cir

} ⊆ C such that eachcij
∈ C′ is near

some point inB, where “near” is defined as within a certain
distance under some weighted norm. Herer is a threshold
indicating the minimum number of target points that must
each be “hit” by some point fromB (the same point inB
could hit multiple target points). In other words, if we define
a boolean attributeai for each target pointci that is 1 if there
exists a pointpj ∈ B near it and 0 otherwise, then the bag’s
label is somer-of-k threshold function over the attributes
(so there arek relevant attributes andB’s label is 1 iff at
leastr of these attributes are 1).

We then extended our GMIL model in the following way.
If we let C̄ = {c̄1, . . . , c̄k′} be a set of “repulsion” points,
then we can require a positive bag tonot have any points
near each point of̄C′ = {c̄′i1 , . . . , c̄

′
ir′
} ⊆ C̄ in addition

to having a point near each point inC′. This means that
to be positive, certain feature values have to be present in
some points of bagB, but also certain feature values must
beabsent. This proved useful in some of our experiments.

Our Previous Algorithm for GMIL
Our previous algorithm (which we call GMIL-1) for learning
geometric concepts in the GMIL model assumes that each
bag is a multiset of at mostn points from the finite, dis-
cretized spaceX = {1, . . . , s}d. Our algorithm then enu-
merates all the possibleN = (s(s + 1)/2)

d axis-parallel
boxes inX and creates two attributes for each boxb: ab and
āb. Given a bagB ∈ Xn, the algorithm setsab = 1 if
some point fromB lies in b andab = 0 otherwise. Then
āb = 1 − ab. These2N attributes are then given to Win-
now1 (Littlestone 1988), which learns a linear threshold unit.

If each bag’s label is given by somer-of-k threshold func-
tion over the attributes (so there arek relevant attributes and
B’s label is 1 iff at leastr of these attributes are 1), then ap-
plying well-known results allows us to conclude that Win-
now’s generalization error when learning such functions is
bounded by a polynomial ink, r, d, and log s. However,
its time complexity isΩ(s2d) per trial, which is exponen-
tial in bothlog s (the number of bits needed to describe each
instance) andd.

To overcome the exponential dependence onlog s, the al-
gorithm partitions the set ofN boxes intogroupssuch that it
is guaranteed that for each boxb in a groupG, all attributes
ab have the same weight in Winnow, as do all attributes

1Winnow is very similar to the Perceptron algorithm but up-
dates its weights multiplicatively rather than additively, which of-
ten yields much faster convergence, especially in cases like ours
when most inputs are irrelevant.

āb. Thus the algorithm maintains only one representative
box per groupG and exactly computes Winnow’s weighted
sum (i.e. the quantity compared to the threshold when mak-
ing predictions) by summing the products of each group’s
weight and its size:

N∑

i=1

ai wai
+ āi wāi

=
∑

G∈Γ

|G| (aG waG
+ āG wāG

),

where|G| is the number of boxes in groupG, aG is the at-
tribute for groupG’s representative box, andΓ is the set of
all groups. The set of groups is built by using the union of
points from all bags2 to rectilinearly partitionX (see Fig-
ure 1). The result is a set ofregionssuch that any pair of
boxesbi and bj are in the same group if both have their
“lower left” corners in regionW and their “upper right” cor-
ners in regionZ. It is easy to see that when the groups are
constructed this way, for each pair of boxesb andb′ in the
same groupG, b andb′ contain the same subset of points
from all bags. Thusab = ab′ andāb = āb′ for all bags, and
all the Winnow weight updates are the same for attributes
ab andab′ as well as̄ab and āb′ . Using this construction,
at mostO(m2d+1) groups are built, wherem is the number
of points used to partition the space. Thus the exponential
dependence onlog s is removed, but the exponential depen-
dence ond remains.
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Figure 1: An example of how GMIL-1 constructs its groups.

We applied GMIL-1 on four different application ar-
eas: robot vision, content-based image retrieval, protein
sequence identification, and drug discovery. Our experi-
ments showed that GMIL-1 is competitive with (and of-
ten better than) DD (Maron & Lozano-Pérez 1998) and
EMDD (Zhang & Goldman 2001), which are two of the
better algorithms in the conventional MIL model (some of
these previous results are summarized in the experimental
section). But in these experiments GMIL-1 built around
4–7 million groups, requiring 500–700 Mb of memory and
around 30 hours to train. However, we also found that after
training was completed, most of the groups could be thrown
out with no impact on prediction error. Indeed, after training
we could always discard at least 80% (typically more than

2When applying GMIL-1 on some applications, we also used
clustering on the training set to preprocess the data to reduce the
number of pointsm used to build the groups. This was done with
data sets where the dimensiond > 2.



97%) of the groups with the lowest weight in Winnow and
have a hypothesis that predicts nearly as well as the origi-
nal. This suggests that only a relatively very small subset
of groups is needed to learn these concepts well, which mo-
tivates our design of GMIL-2. In the following section,
we will describe GMIL-2, which has the same generaliza-
tion ability but runs much faster and uses less memory than
GMIL-1.

The Algorithm GMIL-2
GMIL-2 is similar to GMIL-1 in that it groups boxes to-
gether, assigns boolean attributes to these groups, and gives
these attributes to Winnow to learn anr-of-k threshold func-
tion over these attributes. The key difference from GMIL-1
is how GMIL-2 builds the groups. First, rather than using
the union of points from all training bags, GMIL-2 uses a
setΨ of representative points that capture the distribution of
the training bags. Second, rather than basing the construc-
tion of the groups on a rectilinear partitioning ofX , GMIL-2
directly considers all subsets ofΨ.

The Basic Algorithm
Recall that the reason we can group boxes together in GMIL-
1 is that the boxes in each group contain the same set of
points. For example, in Figure 1, the group defined by re-
gionsW andZ is a set of boxes that contains and only con-
tains points 2, 3 and 5. Instead of representing this group
as a box, we can represent it as a setS = {2, 3, 5}. So
in this representation, any subset of{1, 2, 3, 4, 5, 6} is a po-
tential group. But not all of these subsets are valid groups,
e.g.{4, 6} since any box containing points 4 and 6 must also
contain points 3 and 5. We can easily check ifS is valid by
finding the smallest box containingS and comparingS with
the point set contained by the box (described below).

b1

b2

1

2

3 4

5

6

MBX1

MBX2

Figure 2: An example of how GMIL-2 constructs its groups.

Suppose a set of pointsΨ is given as representatives of
a distribution of points in ad-dimensional feature spaceX .
LetS be a subset ofΨ. We call the smallest box that contains
S the minimum bounding box (MBX) ofS. A subsetS ⊆ Ψ
is valid if there is no pointp ∈ Ψ\S that is contained by the
MBX of S, otherwiseinvalid. Each valid subsetS represents
a groupGS of boxes that contain and only containS in Ψ.
GMIL-2 enumerates all such groups. For each groupGS ,
we define two attributes:lS and l̄S . Given a bagB ∈ Xn,
the algorithm setslS = 1 and l̄S = 0 if for some pointp

from B, the MBX of {p} ∪ S does not contain any point
from Ψ \ S. Otherwise it setslS = 0 and l̄S = 1. These
attributes are then given to Winnow.

Building the Group Set
We now describe our algorithm to build the set of groups
Γ = {GS | S ⊆ Ψ andS is valid}. Obviously, brute-force
enumeration and testing of all2|Ψ| subsets ofΨ is imprac-
tical for even moderately sizedΨ. Thus our algorithm for
building the set of groups exploits the geometric property
that many of these2|Ψ| subsets will be invalid. Our algo-
rithm is similar to breadth-first searching of the set of all
possible groups. This BFS algorithm also leads to a heuris-
tic for choosingΨ in such a way that allows|Ψ| to be quite
large while keeping|Γ| small, e.g. in our experiments, we
used|Ψ| ∈ [5, 105] but had|Γ| < 105.

Our BFS algorithm first puts intoΓ the empty set and all
singleton subsets{p} for eachp ∈ Ψ because all such sub-
sets are valid. After that, it identifies all valid subsets with
size 2 and adds them toΓ, then valid subsets with size3, and
so on up to size|Ψ|. To find all valid subsets with sizek+1,
BFS looks at all size-k subsets. For each size-k subsetS′,
BFS considers each pointp ∈ Ψ \ S′. Each pointp is added
to S′ to formS′

p = S′ ∪ {p}. Then BFS builds the MBXbp

for eachS′
p and adds toΨ the largest setS′′

p ⊆ Ψ contained
by bp. (Note that we might have|S′′

p | > k + 1. That set is
still added toΨ.)3 Since any size-(k + 1) valid subset can
be built by adding one or more points to a valid subset with
size less thank + 1, the algorithm is guaranteed to find all
valid size-(k + 1) subsets. The time complexity of our BFS
group-building algorithm isO(|Ψ||Γ|).

Selecting Representatives
Obviously the more representatives that are used, the more
accurately they represent the true distribution of the points
in the bags. This tempts one to letΨ be the union of the
points in all the training bags. However this could make|Γ|
prohibitively large. Thus we need to reduce|Ψ|. One way is
clustering all the points in the training bags and settingΨ to
the set of point representatives of these clusters.

Intuitively, the largerΨ is, the better our resolution will
be of the instance space and the better our algorithm will
learn. However, because point representatives of clusters
will typically lie in general position (i.e. not lie on the same
low-dimensional hyperplanes), increasing|Ψ| using cluster
representatives only will dramatically increase|Γ|. To see
this, note that if most subsets of the points in Figure 2 were
collinear instead of in general position, the number of dis-
tinct valid groups would decrease significantly. This moti-
vates our method of buildingΨ: first we setΨ to be the point
representatives of a small number of clusters (e.g. 5). Then
we add many random points (e.g. 100) toΨ that are collinear
with these point representatives.

Specifically, first we cluster all points in training bags into
N clusters. Then we build a gridG such that the intervals on

3For example, in Figure 2, adding 2 into{3, 5} yields a valid
subsetS′

2 = S′′

2 = {2, 3, 5}. But adding 4 into{3, 6} yields
S′

4 = {3, 4, 6} andS′′

4 = {3, 4, 5, 6}. ThenS′′

4 is added toΨ.
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Figure 3: An example of how GMIL-2 adds additional
points.

each dimension are defined by the projections ofN clusters
on this dimension. LetΩG be the set of all crossing points
on G. We choose theN clusters andK additional random
points fromΩG as our representatives. For example, in Fig-
ure 3, we add to theN = 6 cluster representatives (black
points)K = 4 additional (white) points fromΩG .

Contrasting GMIL-1 with GMIL-2

Obviously the only difference in the running of both learn-
ing algorithms is the makeup of the group setΓ. Here we
present some more detailed comparisons between the group
sets under various special cases of the representative sets.

First consider whenΨ for GMIL-2 is the union of all
points in all training bags. LetS be a valid subset ofΨ and
let ΓS

1 be the union of all groups for GMIL-1 whose boxes
contain exactlyS. Then the GMIL-2 group represented by
S is exactly equal toΓS

1 , lS = aG andl̄S = āG for all train-
ing bags, and the two algorithms are equivalent. The only
difference is that the set of groups (i.e. the set of attributes
given to Winnow) is smaller for GMIL-2.

Now consider the case when GMIL-1 builds its grid on a
set of representative points rather than the union of all points
in all bags (see Footnote 2). Now since the points in Figure 2
are only representatives, it is possible that there is e.g. apoint
x from the training bags that lies in boxb1 but not in b2.
From its use of the grid to build its group set, GMIL-1’s
groups can recognize this fact, but GMIL-2’s subset-based
construction ofΓ prevents this. Thus GMIL-2 operates in a
space with lower resolution than GMIL-1, and the only way
it can match GMIL-1’s resolution is to setΨ = ΩG . If this
is the case, then the two algorithms are again equivalent.

Thus for special cases, the two algorithms build equiv-
alent group sets. If only a subset of all training points or
grid points is used as representative points, GMIL-2 can be
treated as an approximation to GMIL-1. The time complex-
ity of GMIL-2 is polynomial ind but in the worst case ex-
ponential in|Ψ|. Thus we can now scale up our algorithm
to high dimensions without much of a time complexity in-
crease. However, we obviously cannot use all points from
the training bags, which means we learn on a reduced reso-
lution. This may cause a significant increase in prediction er-
ror for larged (we are currently exploring this). But whether
or not GMIL-2 is suitable for high-dimensional data, our ex-

periments on smaller dimensional data confirm that GMIL-2
is significantly faster than GMIL-1. Further, it turns out that
the low resolution does not hurt in practice.

Experimental Results
We now describe our experiments comparing GMIL-2 with
GMIL-1 in terms of generalization error and computation
costs. Our results show that GMIL-2 is much more efficient
than GMIL-1 with no significant change in prediction error.
We also compare these results with prediction errors of DD
and EMDD on the same data sets.

The Application Areas
Binding Affinity/Antagonist Drugs Dietterich, Lathrop,
& Lozano-Perez (1997) introduced the conventional MIL
model motivated by predicting whether a conformation of
a particular molecule would bind to a single site in another
molecule. But an open problem is how to predict “antagonist
drugs”, whose jobs are to bind at multiple sites in a single
molecule by fitting in several of them simultaneously.

We used a generalization of the synthetic data of Doolyet
al. (2002) to reflect the notion of antagonist drugs. We used
their modified data generator to build ten 5-dimensional data
sets with 4 sub-targets4. For each data set, we first randomly
generated 4 sub-targets and then used the target to label a
training set and test set, each of size 200.

Content-Based Image Retrieval In content-based image
retrieval (CBIR), the user presents examples of desired im-
ages, and the task is to determine commonalities among the
query images. Maron & Ratan (1998) explored the use of
conventional MIL for CBIR. They filtered and subsampled
the images and then extracted “blobs” (groups ofm adja-
cent pixels), which were mapped to one point in a bag. Then
they used the MIL algorithm diverse density (DD) (Maron &
Lozano-Pérez 1998) to learn a hypothesis and find candidate
images in the database. This work was extended by Zhang
et al. (2002), who observed that in their experiments, it was
likely that not one but several target points (in a disjunctive
form) were responsible for labeling the examples. In addi-
tion, it is arguable that if the target concept were conjunctive
(e.g. the desired images contain a fieldanda sky), then the
standard MIL model will not work and a more expressive
hypothesis is needed.

We experimented with two CBIR tasks5. One is Zhang et
al.’s “sunset” task: to distinguish images containing sunsets
from those not containing sunsets. Like Zhang et al., we
built 30 random testing sets of 720 examples (120 positives
and 600 negatives): 150 negatives each from the waterfall,
mountain, field, and flower sets. Each of 30 training sets
consisted of 50 positives and 50 negatives.

Another task is to test a conjunctive CBIR concept, where
the goal is to distinguish images containing a field with no
sky from those containing a field and sky or containing no

4Each sub-target corresponds to a site that a molecule must bind
to in order to be considered a positive bag.

5Based on data from (Wang, Li, & Wiederhold 2001), the Corel
Image Suite, and www.webshots.com.



field. We relabeled Zhang et al.’s field images from positive
to negative those that contained the sky. Each training set
had 6 bags of each of flower, mountain, sunset, and waterfall
for negatives, and had around 30 fields, 6 of them negative
and the rest positive. Each negative test set had 150 bags of
each of flower, mountain, sunset, and waterfall. Also, each
test set had 120 fields, around 50 serving as positives and the
remainder as negatives.

Comparison of Prediction Error
For both GMIL-1 and GMIL-2, wek-means clustered all
training sets and used the clusters’ point representatives
when building group sets (see Footnote 2). The drug dis-
covery data was clustered intom = 5 clusters andm = 6
clusters for CBIR. For building groups for GMIL-2, we
added toΨ a randomly-chosen size-K subset ofΩG , where
K was varied to measure the effect of reduced resolution on
generalization error. In all experiments, we trained both al-
gorithms until they achieved zero training error or until they
trained for 100 rounds.

In Figure 4, all plots show the same trend. When the num-
ber of additional pointsK is small, GMIL-2 has very high
training error and testing error. But by increasingK, we see
a dramatic decrease in the false negative error rates6. Once
K exceeds some value (which depends on the data set), we
see that GMIL-2’s performance for both FP and FN error
rates is statistically indistinguishable from those of GMIL-
1. I.e. GMIL-2 learned a hypothesis that is statistically the
same as GMIL-1’s. In addition, the value ofK required to
do this is quite small (10–60), and much less than|ΩG | (as
discussed earlier,K = |ΩG | would make the two algorithms
exactly equivalent). For example, for the drug discovery
data GMIL-2’s prediction error was indistinguishable from
GMIL-1’s using |Ψ| = 5 + K = 65 representatives while
GMIL-1 used16807 grid points. Thus GMIL-2 can run on
a relatively small number of representatives without a sig-
nificant increase in prediction error7.

Comparison of Computation Costs
The computation time of both GMIL-1 and GMIL-2 de-
pends on the number of groups and how fast they con-
verge. Their memory requirements also depend on the num-
ber of groups. In Table 1(a), we compare the number of
groups built by GMIL-1 to the number built by GMIL-2 with
K = 100. It is obvious that GMIL-2 built much smaller
group sets than GMIL-1, which means GMIL-2 used much
less memory and ran much faster than GMIL-1. We also
compared the average number of trials required for each al-
gorithm to converge to zero error on the training set. From
Table 1(b), we see that GMIL-2 converged in about the same

6For smallK, false positive error is 0 because the initial weights
in Winnow cause it to always predict negative with using low-
resolution inputs.

7We also compared GMIL-1 and GMIL-2 on robot vision data,
where all training bags (with no clustering) were used to build
GMIL-1’s grid on 185344 points and GMIL-2 used|Ψ| = 300

points. Our results were similar in that GMIL-2’s FP and FN rates
were statistically indistinguishable from those of GMIL-1.

number or even fewer trials than GMIL-1. So generally
speaking, they have the same rate of convergence. In all
these experiments, GMIL-1 required 500-700 Mb of mem-
ory and ran for around 30 hours to train on a single data set.
In contrast, GMIL-2 used less than 50 Mb of memory and
finished training in less than one hour on average.

Table 1: Comparison of the computation costs of GMIL-1
and GMIL-2.

(a) The average number of groups generated.

Data Sets GMIL-1 GMIL-2 Savings (%)
Drug discovery 4.08 × 10

6
6.86 × 10

4
98.3

CBIR: sunset 3.89 × 10
6

6.19 × 10
4

98.4

CBIR: conjunctive 5.75 × 10
6

8.46 × 10
4

98.5

(b) The average number of trials in which the algorithms converged.
Data Sets GMIL-1 GMIL-2
Drug discovery 26.8 34.0
CBIR: sunset 41.7 29.0
CBIR: conjunctive 21.4 16.8

Comparison to DD and EMDD

We now compare generalization error of GMIL-1 and
GMIL-2 (with K = 100) to those of EMDD and DD (that
work in the conventional MIL model). EMDD and DD were
run on the original, unclustered data, so they have full reso-
lution, in contrast to the GMIL algorithms. Results are pre-
sented in Table 2. For drug discovery, the FP errors of the
two GMIL algorithms are less than DD and EMDD, but their
FN errors are higher. We suspect that some of the FN error
comes from the data’s low resolution due to clustering in
forming the grid. In the sunset task of CBIR, all four algo-
rithms have similar FP and FN error; none of them shows a
significant advantage over the others. However, for the con-
junctive task, GMIL-1 and GMIL-2 achieved the lowest FP
and FN errors. This occurred despite the potential loss of
information due to clustering. Thus we see that conjunctive
CBIR concepts benefit from generalized MIL. Also we no-
tice that GMIL-2 has a little bit higher prediction error but
again shows almost same generalization ability as GMIL-1
when compared to DD and EMDD.

Table 2: Generalization error of GMIL-1, GMIL-2, DD, and
EMDD.

FP error.
Data Sets GMIL-2 GMIL-1 DD EMDD
Drug discovery 0.208 0.201 0.274 0.263
CBIR: sunset 0.082 0.080 0.078 0.082
CBIR: conjunctive 0.140 0.128 0.173 0.213

FN error.
Data Sets GMIL-2 GMIL-1 DD EMDD
Drug discovery 0.230 0.224 0.108 0.109
CBIR: sunset 0.160 0.157 0.168 0.166
CBIR: conjunctive 0.244 0.219 0.282 0.244
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Figure 4: Comparison of prediction error rates of GMIL-1 andGMIL-2 while varyingK (the number of additional points used
by GMIL-2).

Conclusions and Future Work
While the standard MIL model is powerful, there exist ap-
plications with natural target concepts that cannot be rep-
resented. This is what motivated our prior introduction of
the GMIL model, along with the algorithm GMIL-1 to learn
geometric concepts in it. Here we presented GMIL-2, a
much faster algorithm than GMIL-1. GMIL-2 uses a com-
pact group set based on a set of representative points. Our
experimental results show that it has the same generalization
ability as GMIL-1 and needs much less time and memory to
train.

In future work, we will apply our new algorithm to protein
sequence data to further compare it to GMIL-1. We will also
look at applications with relatively high dimension, e.g.d =
100, to see if the reduced resolution has an adverse effect
on prediction error whend is large. We will also explore
kernel techniques (for use in a support vector machine) to
quickly compute the weighted sum of the inputs, entirely
eliminating the need to enumerate the groups and yielding a
more scalable algorithm.
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