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Abstract

In our prior work, we introduced a generalization of
the multiple-instance learning (MIL) model in which a
bag’s label is not based on a single instance’s proximity
to a single target point. Rather, a bag is positive if and
only if it contains acollection of instances, each near
one of asetof target points. This generalized model is
much more expressive than the conventional multiple-
instance model, and our first algorithm in this model
had significantly lower generalization error on several
applications when compared to algorithms in the con-
ventional MIL model. However, our learning algorithm
for this model required significant time and memory to
run. Here we present and empirically evaluate a new
algorithm, testing it on data from drug discovery and
content-based image retrieval. Our experimental results
show that it has the same generalization ability as our
previous algorithm, but requires much less computation
time and memory.

Introduction

In multiple-instance learning (MIL), each example is a mul-
tiset (called abag) of instances (points) rather than a sin-
gle instance. In the conventional MIL model, each bag’s
(boolean or real) label is entirely determined by a single
point in the bag, e.g. for boolean labels, the bag’s label is
a disjunction of the points’ boolean labels, each of which is
typically determined by the point’s proximity to a single-ta
get point. This is not sufficient for some application areas.
Thus in our prior work (Scott, Zhang, & Brown 2003), we
introduced the generalized MIL (GMIL) model where the
target concept is setof points and the label for a bag is de-
termined by a more general (non-disjunctive) function over
the attributes. We also gave an algorithm that learns geomet
ric concepts in the GMIL model and applied it to several ap-
plication areas including content-based image retrielvaly
discovery, robot vision, and protein sequence analysig; co
paring our results to those of DD (Maron & Lozano-Pérez
1998) and EMDD (Zhang & Goldman 2001), which are very
successful algorithms in the conventional MIL model. Our
algorithm’s classification error rates were consistentijne
petitive with those of DD and EMDD, and in several cases
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significantly better. This corroborated our belief that the
GMIL model is better suited for some applications than the
conventional MIL model.

However, the basic learning algorithm we gave for the
GMIL model is inherently inefficient, requiring hours of
computation time and hundreds of megabytes of memory
to train. Here we present a much faster and more memory-
efficient algorithm that can handle the requirements of real
pattern recognition systems. Our experimental resulta/sho
that it has the same generalization ability as the basicalgo
rithm, but needs much less computation time and memory.

The rest of this paper is organized as follows. In the
following section, we discuss related work in conventional
MIL. Then we describe our GMIL model and our original
algorithm for learning in GMIL. After that, we describe our
new, faster GMIL algorithm. In the experimental section, we
evaluate our algorithm on two application areas (discovery
of antagonist drugs and content-based image retrieval) and
compare it to the old GMIL algorithm. In the last section
we give our conclusions and future work.

The Conventional MIL Model

The multi-instance learning model was introduced by Di-
etterich, Lathrop, & Lozano-Perez (1997). In their model,
each bag is classified as positive if and only if at least one
of its elements is labeled as positive by the target con-
cept. Their work was motivated by the problem of pre-
dicting whether a molecule would bind at a particular site.
They argued empirically that axis-parallel boxes are good
hypotheses for this and other similar learning problems.
This MIL model has been extensively studied (Auer 1997;
Andrews, Tsochantaridis, & Hofmann 2002), along with ex-
tensions for real-valued labels (Dooty al. 2002; Ray &
Page 2001).

In most MIL work, the label of a bag depends only on
the label of a single point, and the label of each point typi-
cally is assumed to depend on a single target point. Excep-
tions include the algorithms DD (Maron & Lozano-Pérez
1998) and EMDD (Zhang & Goldman 2001) in which a
target concept can be a disjunction over multiple points.
However, such disjunctions have to be severely restricted
for the sake of computational efficiency. In other work,
De Raedt (1998) generalizes MIL in the context of induc-
tive logic programming and defines an interesting frame-
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work connecting many forms of learning, allowing relations

ap. Thus the algorithm maintains only one representative

between instances. However, the transformations he gives box per groups and exactly computes Winnow's weighted

between the models have exponential time and space com-

plexity. Also, such generalizations must be explicitlyedn

Our Generalized MIL model

In the GMIL model, the target concept is a set of poifits-
{c1,...,ck}, and the label for a ba® = {p1,...,pn} IS
positive if and only if there is a subset oftarget points
C" = {ci,,...,c;, } € C such that each;, € C'is near
some pointinB, where “near” is defined as within a certain
distance under some weighted norm. Helie a threshold
indicating the minimum number of target points that must
each be “hit” by some point fron®8 (the same point irB
could hit multiple target points). In other words, if we defin
a boolean attribute; for each target point; thatis 1 if there
exists a poinp; € B near it and 0 otherwise, then the bag’s
label is somer-of-k threshold function over the attributes
(so there arék relevant attributes and’s label is 1 iff at
leastr of these attributes are 1).

We then extended our GMIL model in the following way.
If we letC' = {é,...,cr } be a set of “repulsion” paints,
then we can require a positive bagrot have any points
near each point o’ = {¢; ,...,c; , } C C in addition
to having a point near each point @. This means that
to be positive, certain feature values have to be present in
some points of bad3, but also certain feature values must
beabsent This proved useful in some of our experiments.

Our Previous Algorithm for GMIL

Our previous algorithm (which we call GMIL-1) for learning
geometric concepts in the GMIL model assumes that each
bag is a multiset of at most points from the finite, dis-
cretized spacer’ = {1,...,s}<. Our algorithm then enu-

merates all the possibly = (s(s + 1)/2)* axis-parallel
boxes inX and creates two attributes for each Box,; and
ay. Given a bagB € X", the algorithm sets;, = 1 if
some point fromB lies inb anda;, = 0 otherwise. Then
a, = 1 — ap. These2N attributes are then given to Win-
now! (Littlestone 1988), which learns a linear threshold unit.
If each bag’s label is given by someof-£ threshold func-
tion over the attributes (so there dreelevant attributes and
B’s label is 1 iff at least of these attributes are 1), then ap-
plying well-known results allows us to conclude that Win-
now’s generalization error when learning such functions is
bounded by a polynomial ik, r, d, andlogs. However,
its time complexity is2(s2?) per trial, which is exponen-
tial in bothlog s (the number of bits needed to describe each
instance) and.
To overcome the exponential dependencéogrs, the al-
gorithm partitions the set af boxes intogroupssuch that it
is guaranteed that for each bbin a groupG, all attributes
ap have the same weight in Winnow, as do all attributes

Winnow is very similar to the Perceptron algorithm but up-
dates its weights multiplicatively rather than additivelhich of-
ten yields much faster convergence, especially in casesoliks
when most inputs are irrelevant.

sum (i.e. the quantity compared to the threshold when mak-
ing predictions) by summing the products of each group’s
weight and its size:

N
Zai Wa, + @ Wz, = Z |G| (ag Wag + @G Wag),
i=1 Ger

where|G| is the number of boxes in grou, a¢ is the at-
tribute for groupG’s representative box, ardis the set of

all groups. The set of groups is built by using the union of
points from all bagsto rectilinearly partitionX (see Fig-
ure 1). The result is a set oégionssuch that any pair of
boxesb; andb; are in the same group if both have their
“lower left” corners in regio’V and their “upper right” cor-
ners in regiorZ. Itis easy to see that when the groups are
constructed this way, for each pair of boxeand?’ in the
same grougs, b andb’ contain the same subset of points
from all bags. Thus;, = a; anda, = a; for all bags, and

all the Winnow weight updates are the same for attributes
ap anda, as well asa, anda, . Using this construction,

at mostO(m?2?+1) groups are built, where: is the number

of points used to partition the space. Thus the exponential
dependence olg s is removed, but the exponential depen-
dence oni remains.

1 z

%

Figure 1: An example of how GMIL-1 constructs its groups.

We applied GMIL-1 on four different application ar-
eas: robot vision, content-based image retrieval, protein
sequence identification, and drug discovery. Our experi-
ments showed that GMIL-1 is competitive with (and of-
ten better than) DD (Maron & Lozano-Pérez 1998) and
EMDD (Zhang & Goldman 2001), which are two of the
better algorithms in the conventional MIL model (some of
these previous results are summarized in the experimental
section). But in these experiments GMIL-1 built around
4-7 million groups, requiring 500-700 Mb of memory and
around 30 hours to train. However, we also found that after
training was completed, most of the groups could be thrown
out with no impact on prediction error. Indeed, after tragi
we could always discard at least 80% (typically more than

2When applying GMIL-1 on some applications, we also used
clustering on the training set to preprocess the data toceethe
number of pointsn used to build the groups. This was done with
data sets where the dimensién> 2.



97%) of the groups with the lowest weight in Winnow and
have a hypothesis that predicts nearly as well as the origi-
nal. This suggests that only a relatively very small subset
of groups is needed to learn these concepts well, which mo-
tivates our design of GMIL-2. In the following section,
we will describe GMIL-2, which has the same generaliza-
tion ability but runs much faster and uses less memory than
GMIL-1.

The Algorithm GMIL-2

GMIL-2 is similar to GMIL-1 in that it groups boxes to-
gether, assigns boolean attributes to these groups, aed giv
these attributes to Winnow to learn awof- threshold func-
tion over these attributes. The key difference from GMIL-1
is how GMIL-2 builds the groups. First, rather than using
the union of points from all training bags, GMIL-2 uses a
setW of representative points that capture the distribution of

the training bags. Second, rather than basing the construc-

tion of the groups on a rectilinear partitioning&f GMIL-2
directly considers all subsets &f

The Basic Algorithm
Recall that the reason we can group boxes together in GMIL-

from B, the MBX of {p} U S does not contain any point
from ¥ \ S. Otherwise it setds = 0 andls = 1. These
attributes are then given to Winnow.

Building the Group Set

We now describe our algorithm to build the set of groups
I'={Gs | S C ¥ andS is valid}. Obviously, brute-force
enumeration and testing of @l¥! subsets ofF is imprac-
tical for even moderately sizeft. Thus our algorithm for
building the set of groups exploits the geometric property
that many of these!¥! subsets will be invalid. Our algo-
rithm is similar to breadth-first searching of the set of all
possible groups. This BFS algorithm also leads to a heuris-
tic for choosing? in such a way that allowgl| to be quite
large while keepingI'| small, e.g. in our experiments, we
used ¥| € [5,105] but had|T'| < 105.

Our BFS algorithm first puts intd the empty set and all
singleton subsetép} for eachp € ¥ because all such sub-
sets are valid. After that, it identifies all valid subsetshwi
size 2 and adds them Iy then valid subsets with sizg and
so on up to sizé¥|. To find all valid subsets with size+ 1,
BFS looks at all sizé: subsets. For each sizesubsets’,
BFS considers each poipte ¥ \ S’. Each poinp is added

1 is that the boxes in each group contain the same set of 05" to form S, = S”U {p}. Then BFS builds the MBX,,

points. For example, in Figure 1, the group defined by re-
gionsW andZ is a set of boxes that contains and only con-
tains points 2, 3 and 5. Instead of representing this group
as a box, we can represent it as a Set {2,3,5}. So

in this representation, any subset{df 2, 3,4, 5,6} is a po-
tential group. But not all of these subsets are valid groups,
e.g.{4, 6} since any box containing points 4 and 6 must also
contain points 3 and 5. We can easily checK i valid by
finding the smallest box containirfjand comparing' with

the point set contained by the box (described below).

bl

b2

MBX2|

Figure 2: An example of how GMIL-2 constructs its groups.

Suppose a set of pointg is given as representatives of
a distribution of points in @-dimensional feature space.
Let.S be a subset oF. We call the smallest box that contains
S the minimum bounding box (MBX) of. A subsetS C ¥
is valid if there is no poinp € ¥\ S that is contained by the
MBX of S, otherwisenvalid. Each valid subsef represents
a groupGs of boxes that contain and only contashin .
GMIL-2 enumerates all such groups. For each grélp
we define two attributess andlg. Given a bagB € X",
the algorithm setés = 1 andls = 0 if for some pointp

for eachSé and adds tol the largest seﬂg C ¥ contained
by b,. (Note that we might havgs'| > k + 1. That set is

still added to¥.)®> Since any sizé% + 1) valid subset can
be built by adding one or more points to a valid subset with
size less thaik + 1, the algorithm is guaranteed to find all
valid size{k + 1) subsets. The time complexity of our BFS
group-building algorithm i€ (|¥||T').

Selecting Representatives

Obviously the more representatives that are used, the more
accurately they represent the true distribution of the {soin
in the bags. This tempts one to Mt be the union of the
points in all the training bags. However this could m&Re
prohibitively large. Thus we need to redydd. One way is
clustering all the points in the training bags and settinp
the set of point representatives of these clusters.

Intuitively, the largerV is, the better our resolution will
be of the instance space and the better our algorithm will
learn. However, because point representatives of clusters
will typically lie in general position (i.e. not lie on the &
low-dimensional hyperplanes), increasifig using cluster
representatives only will dramatically increg$g. To see
this, note that if most subsets of the points in Figure 2 were
collinear instead of in general position, the number of dis-
tinct valid groups would decrease significantly. This moti-
vates our method of building: first we setl to be the point
representatives of a small number of clusters (e.g. 5). Then
we add many random points (e.g. 100)it¢hat are collinear
with these point representatives.

Specifically, first we cluster all points in training bagsint
N clusters. Then we build a grid such that the intervals on

3For example, in Figure 2, adding 2 in{8, 5} yields a valid
subsetS; = S5 = {2,3,5}. But adding 4 into{3,6} yields
Sy ={3,4,6} andSy = {3,4,5,6}. ThenS} is added tol.



Figure 3: An example of how GMIL-2 adds additional
points.

each dimension are defined by the projectiond/aflusters
on this dimension. Lef)g be the set of all crossing points
onG. We choose théV clusters and additional random
points from{)g as our representatives. For example, in Fig-
ure 3, we add to thév = 6 cluster representatives (black
points)K' = 4 additional (white) points fronflg.

Contrasting GMIL-1 with GMIL-2

Obviously the only difference in the running of both learn-
ing algorithms is the makeup of the group $etHere we

periments on smaller dimensional data confirm that GMIL-2
is significantly faster than GMIL-1. Further, it turns ouaith
the low resolution does not hurt in practice.

Experimental Results

We now describe our experiments comparing GMIL-2 with
GMIL-1 in terms of generalization error and computation
costs. Our results show that GMIL-2 is much more efficient
than GMIL-1 with no significant change in prediction error.
We also compare these results with prediction errors of DD
and EMDD on the same data sets.

The Application Areas

Binding Affinity/Antagonist Drugs Dietterich, Lathrop,

& Lozano-Perez (1997) introduced the conventional MIL
model motivated by predicting whether a conformation of
a particular molecule would bind to a single site in another
molecule. But an open problem is how to predict “antagonist
drugs”, whose jobs are to bind at multiple sites in a single
molecule by fitting in several of them simultaneously.

We used a generalization of the synthetic data of Debly
al. (2002) to reflect the notion of antagonist drugs. We used
their modified data generator to build ten 5-dimensiona dat
sets with 4 sub-targetsFor each data set, we first randomly
generated 4 sub-targets and then used the target to label a

present some more detailed comparisons between the grouptraining set and test set, each of size 200.

sets under various special cases of the representative sets
First consider whenl for GMIL-2 is the union of all

points in all training bags. Lef be a valid subset of and

let 'Y be the union of all groups for GMIL-1 whose boxes

contain exactlyS. Then the GMIL-2 group represented by

Sis exactly equal td'y, Is = ag andls = a for all train-

ing bags, and the two algorithms are equivalent. The only

difference is that the set of groups (i.e. the set of attabut
given to Winnow) is smaller for GMIL-2.

Now consider the case when GMIL-1 builds its grid on a
set of representative points rather than the union of afifgoi

Content-Based Image Retrieval In content-based image
retrieval (CBIR), the user presents examples of desired im-
ages, and the task is to determine commonalities among the
query images. Maron & Ratan (1998) explored the use of
conventional MIL for CBIR. They filtered and subsampled
the images and then extracted “blobs” (groupsrofadja-
cent pixels), which were mapped to one pointin a bag. Then
they used the MIL algorithm diverse density (DD) (Maron &
Lozano-Pérez 1998) to learn a hypothesis and find candidate
images in the database. This work was extended by Zhang
et al. (2002), who observed that in their experiments, it was

in all bags (see Footnote 2). Now since the points in Figure 2 jixely that not one but several target points (in a disjureti

are only representatives, it is possible that there is gagird
x from the training bags that lies in bd® but not inb2.
From its use of the grid to build its group set, GMIL-1's

form) were responsible for labeling the examples. In addi-
tion, it is arguable that if the target concept were conjivect
(e.g. the desired images contain a fialttla sky), then the

groups can recognize this fact, but GMIL-2's subset-based gtangard MIL model will not work and a more expressive

construction of” prevents this. Thus GMIL-2 operates in a
space with lower resolution than GMIL-1, and the only way
it can match GMIL-1's resolution is to sdt = Qg. If this

is the case, then the two algorithms are again equivalent.

hypothesis is needed.

We experimented with two CBIR tasksOne is Zhang et
al.'s “sunset” task: to distinguish images containing &tss
from those not containing sunsets. Like Zhang et al., we

Thus for special cases, the two algorithms build equiv- pilt 30 random testing sets of 720 examples (120 positives

alent group sets. If only a subset of all training points or

and 600 negatives): 150 negatives each from the waterfall,

grid points is used as representative points, GMIL-2 can be mountain, field, and flower sets. Each of 30 training sets
treated as an approximation to GMIL-1. The time complex-  ¢onsisted of 50 positives and 50 negatives.

ity of GMIL-2 is polynomial ind but in the worst case ex-
ponential in|¥|. Thus we can now scale up our algorithm
to high dimensions without much of a time complexity in-

crease. However, we obviously cannot use all points from
the training bags, which means we learn on a reduced reso-

lution. This may cause a significantincrease in predictien e
ror for larged (we are currently exploring this). But whether
or not GMIL-2 is suitable for high-dimensional data, our ex-

Another task is to test a conjunctive CBIR concept, where
the goal is to distinguish images containing a field with no
sky from those containing a field and sky or containing no

4Each sub-target corresponds to a site that a molecule nmast bi
to in order to be considered a positive bag.

5Based on data from (Wang, Li, & Wiederhold 2001), the Corel
Image Suite, and www.webshots.com.



field. We relabeled Zhang et al.’s field images from positive number or even fewer trials than GMIL-1. So generally
to negative those that contained the sky. Each training set speaking, they have the same rate of convergence. In all
had 6 bags of each of flower, mountain, sunset, and waterfall these experiments, GMIL-1 required 500-700 Mb of mem-
for negatives, and had around 30 fields, 6 of them negative ory and ran for around 30 hours to train on a single data set.
and the rest positive. Each negative test set had 150 bags ofln contrast, GMIL-2 used less than 50 Mb of memory and
each of flower, mountain, sunset, and waterfall. Also, each finished training in less than one hour on average.
test set had 120 fields, around 50 serving as positives and the
remainder as negatives.

Table 1: Comparison of the computation costs of GMIL-1

Comparison of Prediction Error and GMIL-2.
For both GMIL-1 and GMIL-2, wek-means clustered all (a) The average number of groups generated.
training sets and used the clusters’ point representatives
when building group sets (see Footnote 2). The drug dis- _Data Sets GMIL-1 GMIL-2  Savings (%)
covery data was clustered into = 5 clusters andn = 6 Drug discovery | 4.08 x 10°  6.86 x 10" 98.3
clusters for CBIR. For building groups for GMIL-2, we CBIR:sunset | 3.89 x 10°  6.19 x 10* 98.4
added to¥ a randomly-chosen sizE- subset of)g, where CBIR: conjunctive | 5.75 x 10° _ 8.46 x 10" 98.5
K was varied to measure the effect of reduced resolution on (b) The average number of trials in which the algorithms eoged.
generalization error. In all experiments, we trained badth a Data Sets GMIL-1 GMIL-2
gorithms until they achieved zero training error or untéyh Drug discovery 26.8 34.0
trained for 100 rounds. CBIR: sunset 41.7 29.0

In Figure 4, all plots show the same trend. When the num- CBIR: conjunctive| 21.4 16.8

ber of additional pointd is small, GMIL-2 has very high
training error and testing error. But by increasikigwe see
a dramatic decrease in the false negative error%at@ace
K exceeds some value (which depends on the data set), weComparison to DD and EMDD
see that GMIL-2’s performance for both FP and FN error
rates is statistically indistinguishable from those of GMI

1. l.e. GMIL-2 learned a hypothesis that is statisticallg th
same as GMIL-1’s. In addition, the value &f required to

do this is quite small (10-60), and much less tap| (as
discussed earlief = |Q2g| would make the two algorithms

exactly equivalent). For example, for the drug discovery i ;
data GMIL-2's prediction error was indistinguishable from W0 GMIL algorithms are less than DD and EMDD, but their

GMIL-1's using |¥| = 5 + K = 65 representatives while FN errors are higher. We suspect that some of the FN error

GMIL-1 used16807 grid points. Thus GMIL-2 can run on comes from the data’s low resolution due to clustering in
a relatively small number of representatives without a sig- [0'Ming the grid. In the sunset task of CBIR, all four algo-
nificant increase in prediction erfor rithms have similar FP and FN error; none of them shows a

significant advantage over the others. However, for the con-
; ; junctive task, GMIL-1 and GMIL-2 achieved the lowest FP
Comparison (_)f Cgmputatlon Costs and FN errors. This occurred despite the potential loss of
The computation time of both GMIL-1 and GMIL-2 de-  information due to clustering. Thus we see that conjunctive
pends on the number of groups and how fast they con- CBIR concepts benefit from generalized MIL. Also we no-
verge. Their memory requirements also depend on the num- tice that GMIL-2 has a little bit higher prediction error but

ber of groups. In Table 1(a), we compare the number of again shows almost same generalization ability as GMIL-1
groups built by GMIL-1 to the number built by GMIL-2 with when Compared to DD and EMDD.

K = 100. It is obvious that GMIL-2 built much smaller

group sets than GMIL-1, which means GMIL-2 used much

less memory and ran much faster than GMIL-1.  We also Taple 2: Generalization error of GMIL-1, GMIL-2, DD, and
compared the average number of trials required for each al- gppp.

gorithm to converge to zero error on the training set. From

We now compare generalization error of GMIL-1 and
GMIL-2 (with K = 100) to those of EMDD and DD (that
work in the conventional MIL model). EMDD and DD were
run on the original, unclustered data, so they have full+eso
lution, in contrast to the GMIL algorithms. Results are pre-
sented in Table 2. For drug discovery, the FP errors of the

; FP error.
Table 1(b), we see that GMIL-2 converged in about the same Data Seis GMIL2 - GMIL-T DD EMDD
®For smallK, false positive error is 0 because the initial weights gggR:dlssucr?sveetry 8ggg 8%&1) 83;3 8323

in Winnow cause it to always predict negative with using low-

A CBIR: conjunctive| 0.140 0.128 0.173 0.213
resolution inputs.

"We also compared GMIL-1 and GMIL-2 on robot vision data, Data Sets GM|F|_’_\12err%'|v|||__1 DD EMDD
where all training bags (with no clustering) were used tddoui Drug discovery 0.230 0224 0.108 0.109
GMIL-1’s grid on 185344 points and GMIL-2 usdd’| = 300 CBIR: sunset 0.160 0.157 0.168 0.166
points. Our results were similar in that GMIL-2's FP and Fiesa CBIR: conjunctive | 0.244 0219 0.282 0244

were statistically indistinguishable from those of GMIL-1
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Figure 4: Comparison of prediction error rates of GMIL-1 &dIL-2 while varying K (the number of additional points used

by GMIL-2).

Conclusions and Future Work
While the standard MIL model is powerful, there exist ap-

plications with natural target concepts that cannot be rep-

resented. This is what motivated our prior introduction of
the GMIL model, along with the algorithm GMIL-1 to learn

geometric concepts in it. Here we presented GMIL-2, a
much faster algorithm than GMIL-1. GMIL-2 uses a com-

pact group set based on a set of representative points. Our

experimental results show that it has the same generalizati
ability as GMIL-1 and needs much less time and memory to
train.

In future work, we will apply our new algorithm to protein
sequence data to further compare it to GMIL-1. We will also
look at applications with relatively high dimension, elg=

100, to see if the reduced resolution has an adverse effect

on prediction error whew is large. We will also explore

kernel techniques (for use in a support vector machine) to

quickly compute the weighted sum of the inputs, entirely

eliminating the need to enumerate the groups and yielding a

more scalable algorithm.
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